O ESTADO EVOLUTIVO QUÂNTICO DE GRACELI.


  ψ         /    .


5º Postulado: evolução temporal  O estado de um sistema quântico não perturbado tem sua evolução temporal dada por: 

O espaço de Hilbert é uma generalização do espaço euclidiano comum[3] e contém todos os possíveis estados quânticos puros do sistema dado.[4] Se este espaço de Hilbert, por escolha de representação (essencialmente uma escolha de base correspondente a um conjunto completo de observáveis), é exibido como um espaço de função (um espaço de Hilbert por direito próprio), então os representantes são conhecidos como funções de onda.

Por exemplo, quando se trata do espectro de energia do elétron em um átomo de hidrogênio, os vetores de estado relevantes são identificados pelo número quântico principal n, o número quântico do momento angular l, o número quântico magnético m, e o spin z. Um caso mais complicado é dado (na notação bra-ket) pela parte de spin de um vetor de estado:

que evolve para a superposição dos estados de spin conjunto para duas partículas com spin 12.

 


  MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.





  MECÃNICA GRACELI GERAL - QTDRC.




equação Graceli dimensional relativista  tensorial quântica de campos 

G* =  =

[  /  IFF ]   * =   /  G   /     .  /

 G  = [DR] =            .+  

+  * =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.

/

  / *=  = [          ] ω           .

 MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;


MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.



dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.



ψ     [   ]    .




                                           - [  G*   /.    ] [  [

G { f [dd]}  ´[d] G*         / .  f [d]   G*                             dd [G]


O ESTADO QUÂNTICO DE GRACELI


                                           - [  G*   /.    ] [  []


G* = DIMENSÕES DE GRACELI TAMBÉM ESTÁ RELACIONADO COM INTERAÇÕES DE ENERGIAS, QUÂNTICAS, RELATIVÍSTICAS, , E INTERAÇÕES DE CAMPOS.


o tensor energia-momento  é aquele de um campo eletromagnético,

  1 /  = [          ] ω       ψ      [ / [    ]    .   .



   = [          ] ,     [ ψ     [  ] / [  ]    .]    .




 = [          ] ,     [ ψ      [][]    .



ψ [ ψ  []/    .



ψ  / [] /  [] /  ]    . ] 



ψ     / [[ ]    .



ψ     [ ]    .


ψ      []    .






ψ  [ ]/     .


* [ ] .








 [].  .


ψ []  .










[]    .


ψ      []  / ]    .






ψ     []/ / ]     .


ψ [  []   .








ψ [.] / ψ     .



  [ ] / ψ   .






Antes de se discutir sobre a partícula na caixa, é importante saber que para se resolver este problema, os conceitos e as aplicações dos postulados da mecânica quântica.

1º Postulado: a função de onda  A função de onda contém toda as informações para determinar o estado de um sistema. Por isso, ela tem que ser unívoca, contínua e de derivadas contínuas.

2º Postulado: operadores  Para toda e qualquer observável física há um operador linear e hermitiano.

  • Teorema 1:os autovalores do operador hermitiano são reais.
  • Teorema 2: as autofunções de um operador hermitiano são ortogonais.

3º Postulado: valores de observáveis  os valores possíveis a ser obtidos por medidas de uma propriedade física observável , são os autovalores  da equação de autovalor  , em que  é o operador que corresponde à propriedade observável  e  são as autofunções do operador .

4º Postulado: valor médio  Sendo  uma função de estado do sistema normalizada, logo o valor médio da observável  no tempo é: 

5º Postulado: evolução temporal  O estado de um sistema quântico não perturbado tem sua evolução temporal dada por: 

Comentários

Mensagens populares deste blogue